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Since E E M RHS of these two
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Therefore I M Providedthat we can

show that M is nideed an o algebra one then I M

bythe Structure Theoremfor open
sets

any open set
can be represented in

theform G In with countable

pairwise disjoint open intervals In YOU

Exercise to show this To complete
the proofof I we need a series of

lemmas The 1st lemma
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the definition of measurabilityof
E E M

to E E E E
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Moreover if m E 0 then each of i v

implies Il Iz In
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Thus Vi is a sufficient condition for E
E M

but not a necessary condition
unless

m E Cto

proof
i ii As an intermediatestep we
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showing vi
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U as in VI ByQuasi OuterRegularity
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G E U E U with m G C E Then
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Since Eso is arbitrary it holds
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Pf We now that β Mo M Conversely

lit E E M Then Go set H E iththat
2 HIE E M so E HIZ Similarly Fr set
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m F closed F A so myAl m

M F m E if FE E EM so sup MEI MoreoverWe20 MLE EC mF forsomeF
Then E E M my E mm El

and the converse holds provided that myA
mth is to

pf Suppose My Al
m A TN and E O Then F A

with FEA EG s t with F cloud G open s.t.mn mm

so m G F m G M F 22 Setting In we have F A Gn
setting
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H Gn and K E Fn we have KEAE H

and H K E Mo Hence

A KU 4 114 with K E M
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Counter example if m AI o My AI
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e g A P u o 0 where P 0,1
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Then m Al to m A while A M
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Ex1 MY I L I interval I

Sol Suppose I a b EIR special case Then

I a E b E 70 so m I b a E Ezo

Hine m I I I Bythe Total lengthTh COI C

In new one has Ella 1 I so m I l I

Donethis special case Moreover frich
one

interval I III to has mt I I why

and 111 I it followsfrom our result

on the special case that m II III

Finally consider the case when I 2 N

Then MEN I oflength n s.tl In n

Then
mt I mYIn l In n a

50 m I 0 l I Done all possible

cases for interval I
m I I



EX 2 Let I ai bit i 1 and

If I n Iz

Let a min 91,92 and b max be be

Suppose a 6 and b ba Then

1 ai I and 3 ba Iz

and hence that a b I UI a b

i.e ab I V Tz Thus I UI is

always an interval if they have a

common point
Sol Byassumptions a is the left end point

of I d If I so a 3 I so is clear

and hence a b I V12 while the 2nd

inclusion in is clear by definition of
a b

The reader should check the last assertion



Ex 3 Let G be a collection of

open intervals containing
a common 3

Them the unionYof members of 6 is

an interval

Sol Let 3 KC 32 with 31,32 W

By it sufficient to
show that kt W

To do this take It Iz 8 s V

Z t Ii 32 Iz Then

31,32 IN Iz while I V Iz

is an interval by Ex as If I n Iz

It followsfrom 3 32 that XE I VIz

so RE W

Structure TheoremofOpenSets
Any open set Gin IR can be expressed
as a disjoint countable union of open



intervals

Proof Let kt G and let Indenoti

the union of all open sets
contained in G

containing x Then In is the largest

open interval why
contained in G

and containing a Then ye G

Ix either coincide with Iy or

disjoint as In U Iy is also

an internal if Isin I 0

Thus In E G is a disjoint

family with
union equal to G

it is countable et
meaning that G is countable
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then have a 1 1
map from this

family into Q
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Sol That for me was notid
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Into new Atk KEIR

and I Int x L In

Suppore E E M at IR Then

Ei Etx Hence A EIR
At

m A mt At n E m AnE
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Writing A for A 21 it followsETIthat
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Sol Easy to check that β is

an J abg containing If It so

β β x by the smallest property

of B Hence pin Bta x β
LE IR Replaning x by a we have

β x B so equal



3.2 Non measurable sets

Let m A E to with

translation invariant G alg A
and translation invariant measure

m such that O E E 2k
and

m I L I V IE d

Then A E 2K F P E IR d

p at t

Pf Defer to the end of our
com se


